Bica and Random Subspace Ensembles for Dna Microarray-based Diagnosis
نویسنده
چکیده
We compare two ensemble methods to classify DNA microarray data. The methods use different strategies to face the course of dimensionality plaguing these data. One of them projects data along random coordinates, the other compresses them into independent boolean variables. Both result in random feature extraction procedures, feeding SVMs as base learners for a majority voting ensemble classifier. The classification capabilities are comparable, degrading on instances that are acknowledged anomalous in the literature.
منابع مشابه
Random subspace ensembles for the bio-molecular diagnosis of tumors
The bio-molecular diagnosis of malignancies, based on DNA microarray biotechnologies, is a difficult learning task, because of the high dimensionality and low cardinality of the data. Many supervised learning techniques, among them support vector machines (SVMs), have been experimented, using also feature selection methods to reduce the dimensionality of the data. In this paper we investigate a...
متن کاملBio-molecular cancer prediction with random subspace ensembles of support vector machines
Support Vector Machines (SVMs), and other supervised learning techniques have been experimented for the bio-molecular diagnosis of malignancies, using also feature selection methods. The classification task is particularly difficult because of the high dimensionality and low cardinality of gene expression data. In this paper we investigate a different approach based on random subspace ensembles...
متن کاملFeature Selection Combined with Random Subspace Ensemble for Gene Expression Based Diagnosis of Malignancies
The bio-molecular diagnosis of malignancies represents a difficult learning task, because of the high dimensionality and low cardinality of the data. Many supervised learning techniques, among them support vector machines, have been experimented, using also feature selection methods to reduce the dimensionality of the data. In alternative to feature selection methods, we proposed to apply rando...
متن کاملInvestigation of Property Valuation Models Based on Decision Tree Ensembles Built over Noised Data
The ensemble machine learning methods incorporating bagging, random subspace, random forest, and rotation forest employing decision trees, i.e. Pruned Model Trees, as base learning algorithms were developed in WEKA environment. The methods were applied to the real-world regression problem of predicting the prices of residential premises based on historical data of sales/purchase transactions. T...
متن کاملDiagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data
Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006